

WWTP Side Stream Treatment of Nutrients – Considerations for City of Raleigh's Bioenergy Recovery Project

Erika L. Bailey, PE, City of Raleigh

LNBA / NRCA 2017 Wastewater Treatment Plant Operators Training Workshop July 18 and 20, 2017

Acknowledgements

Topics for Today's Presentation

1. Side Stream Treatment Overview

- What is side stream treatment?
- Different types of side stream treatment systems

2. Side Stream Treatment Planning for City's Bioenergy Recovery Project

- Bioenergy Recovery Program overview (Quick Recap)
- Drivers for side stream treatment at NRRRF
- Process considerations for treating high strength filtrate
- Side stream treatment systems considered
- LIFT SEE IT site visit of short-cut nitrogen removal systems
- Next Steps

What is Side Stream Treatment?

- Separate treatment of solids handling recycle streams
- Lessen impacts of recycle nutrient loads on main treatment process
 - Small volume, high nutrient load
 - Intermittent solids handling operations can impact peak loads
 - Potential to impact main stream nutrient removal process
 - Ammonia break through
 - Increased air demands
 - Increased chemical demands
 - Variable performance

Different Types of Side Stream Treatment

Equalization

- Attenuate flows and/or loads from solids handling operation
 - Reduce potential for ammonia break through
 - Reduce fluctuations on air demands
 - Reduce fluctuations on supplemental carbon demands

Side Stream Short-Cut Nitrogen Removal

- Biologically treat nitrogen in side stream treatment process
- Often use "Short-Cut" nitrogen cycle
 - Reduce air required
 - Reduce / eliminate carbon
 - Several different systems available

Side Stream Phosphorus Removal

- Add coagulant for chemical phosphorus removal
- Or utilize process to recover phosphorus
 - Add chemicals to produce struvite in controlled environment
 - Obtain phosphorus rich product that can be used as fertilizer
 - Several different systems available

Neuse River Resource Recovery Facility

- Currently expanding from 60 to 75 mgd
- Planning for expansion to 90 mgd (~ 2040)
- Centralized biosolids processing
 - Lime stabilization, composting, and some Class B liquid land application
- Converting to advanced digestion (Thermal Hydrolysis)
- Includes side stream nitrogen removal for Phase 1

NRRRF Existing Process Flow Diagram

Proposed Biosolids Process

Visualization of the New Residuals Handling Complex (30-Percent Design Concept)

Drivers for Side Stream Nitrogen Removal

- Improved VSR across digestion increases nutrient mass loadings in the sidestream. (+20%)
- Deammonification offers a reduced energy and reduce carbon pathway for nitrogen removal.
 - ~\$600,000 additional O&M costs to treat in main stream process at current flows and loads

Drivers for Side Stream Phosphorus Removal

- Improved VSR across digestion increases nutrient mass loadings in the side stream
 - Increased risk for struvite precipitation
 - Opportunities for P recovery
- Side stream TP loads signficantly lower with chemical P vs. biological P removal
 - Plan to stay with chemical P removal for now at NRRRF
 - Provisions for side stream alum addition at multiple locations
- Site layout allows for space for future phosphorus recovery

Description	50% Ultimate	Ultimate	Side Stream TP Concentration (mg/L)
Side Stream TP Load with Chemical P Removal (lbs/day)	240	470	94
Side Stream TP Load with Biological P Removal (lbs/day)	710	1,420	284

NRRRF Projected Side Stream Loads

- TKN and NH₄ loads from BioWin Modeling, mass balance, and literature
- BOD, COD, CODs, Alkalinity values estimated from literature and other facilities
- Ultimate design based on 90 MGD Design Flow (2040)
 - Install 1 train designed to treat 50% of ultimate (90 MGD) load now
- 1x Dilution Water Necessary for effects of high COD in THP Effluent

Description	50% Ultimate	Ultimate	Diluted Conc (mg/L)
Sidestream Flow (mgd)	0.15	0.30	
Dilution Water Flow (mgd)	0.15	0.30	
TKN (lb N/day)	3,375	6,750	1,350
NH ₃ (lb N/day) (85% of TKN)	2,869	5,738	1,150
BOD (lb/day)	125-1,000	250-2,000	50 – 400
COD (lb/day)	7,874	15,748	3,150
CODs (lb/day)	6,750	13,500	2,700
TSS (lb/day)	1,751	3,503	700
Alkalinity (lb/day)	10,125	20,250	4,050

THP Digestate Challenges

High TKN

- Potential to inhibit AOBs
- Alkalinity and NH₃-N balance

High COD

- Potential to Inhibit AOBs
- Increased competition between annamox and heterotrophs

High TP

• Increased risk for struvite formation

Other Potential Challenges

- Elevated TSS
- Elevated Polymer
- Diffusion Limitations

Example Short-Cut Nitrogen Removal "Process Enhancement" Strategies

Dilute filtrate (≥1:1)

 Reduce AOB inhibition to high ammonia and COD (Figdore et al, 2011)

AOB in suspension; annamox on media (ANITA™ Mox IFAS configuration)

• Improve substrate diffusion (Zhao et al)

Higher operating DO

• Reduce oxygen diffusion limitation (Zhang et al, 2016)

Better annamox selection

 Increase annamox retention (Zhang et al, 2016)

Pretreat filtrate

 Reduces struvite potential; reduces annamox competition (Remy et al, 2016)

Side Stream will use Deammonification

- Short-Cut Nitrogen Removal
- Ammonia Oxidizing Bacteria (AOB)
 - Aerobically convert ½ of ammonia to nitrite
- Anaerobic Ammonia Oxidizing Bacteria (annamox)
 - Oxidize ammonia under anoxic conditions
 - Utilize nitrite as oxygen source
- No carbon needed
- Some residual NO₃-N

Deammonification Technologies Considered

- Two Recommended from PER
 - World Water Works conDEA™
 - Kruger ANITA™ Mox IFAS

	WWW conDEA™	Kruger ANITA™ Mox IFAS
Reactor configuration	Flow Through	Flow Through
Biomass characteristic	Flocs and granules	Biofilm on media and flocs (IFAS)
Proprietary retention strategy	Micro-Screen and Lamella Plate Settlers	Plastic carriers, screens, and clarifier
Process Diagram	Sidestream Treated Effluent conDEA	Sidestream Treated Effluent ANITAMOX IFAS

World Water Works conDEA™

- Continuous flow through process
- Annamox bacteria suspended in granular form
- MicroScreen is use to retain anammox and waste NOB
 - Selects for large annamox granules
 - 100% of flow can best through screen if clarifier upset
- Messner Panel Aeration (Fine bubble)
- New Lamella clarifier for solids separation
- Strass is running with MicroScreen configuration
- No US installations yet using revised configuration

Kruger ANITA™ Mox IFAS

- Continuous flow through process
- Anammox bacteria colonized on plastic media carriers
- Medium Bubble Aeration System
- Majority of AOBs are in the suspended phase (Zhao et al)
- Clarifier used for solids return, waste from RAS line to maintain design liquid phase SRT
- No US installations of <u>sidestream</u> IFAS system

ANITA™ Mox – MBBR vs. IFAS Configuration

Figures courtesy of Veolia (with permission)

New to US Marketplace: Ovivo-Paques AnammoPAQ™

Design Info	AnammoPAQ
Reactor configuration	Flow Through
Biomass characteristic	Granules
Proprietary retention strategy	Inclined Plate Settlers – weight-based selection

New to US Marketplace: Ovivo-Paques AnammoPAQ™

- Continuous flow through process
- Completely granular system
- Anammox and AOB bacteria co-exist on granules
- No RAS; Single pass operation
- Granules retained in system through separator
- Occasional "sluicing" of excess granules
- 35 references (0 in USA/1 downstream of THP)
 - Largest unit 10 metric tons of nitrogen/day
 - Install at Olburgen in service for 10 years
- Purportedly higher loading rate

"The LIFT Scholarship Exchange Experience for Innovation & Technology Program (SEE IT) is an initiative spearheaded by <u>WE&RF</u>, <u>WEF</u>, and <u>NACWA</u> to provide scholarships for utility personnel to visit other utilities with innovations of interest and to share experiences with their peers"

http://www.werf.org/lift/LIFT SEE IT.aspx

World Water Works conDEA™, Amersfoort, NL

Ovivo-Paques AnammoPAQ™, Olburgen, NL

Veolia ANITA™ Mox IFAS, Boras, Sweden

Next Steps

- Regroup on LIFT SEE IT Site Visit Findings with Design Team
- Finalize selection criteria (cost and non-cost)
- Develop weighted scoring system
- Obtain updated proposals
- Evaluate using selection criteria and weighted scoring system
- Finalize selection and move forward with final design of side stream treatment system

Thank You!

