

# Biogas Utilization for City of Raleigh's Bioenergy Recovery Project



Erika L. Bailey, PE, City of Raleigh

LNBA / NRCA 2017 Wastewater Treatment Plant Operators Training Workshop July 18 and 20, 2017

## **Acknowledgements**









## **Topics for Today's Presentation**

- 1. Biogas Utilization Overview
  - What is biogas?
  - Considerations for biogas utilization
- Biogas Utilization Planning for City's Bioenergy Recovery Project
  - Bioenergy Recovery Program overview
  - Biogas utilization alternatives considered
  - Gas cleaning system considerations and technologies considered
  - Proposed alternative for Bioenergy Recovery Project
  - Next Steps

# Biogas Utilization Overview

## What is Biogas?

- Biogas is an end product of the anaerobic digestion process
- Anaerobic digestion
  - Organic material biologically decomposed in absence of oxygen
    - Organic material
- Biosolids
- Decomposition
- VS Reduction
- End products







## **Biogas Components**

- Methane (CH<sub>4</sub>)
  - Typically 50 70% of biogas
- Carbon Dioxide (CO<sub>2</sub>)
- Other constituents that also may need to be treated
  - Moisture
  - Hydrogen Sulfide (H<sub>2</sub>S)
  - Siloxanes
  - VOCs
- Typically produce 15 scf of biogas /lb VSR



## **How is Biogas Utilized?**

- Provide heat to digesters
  - Hot water or steam for boilers
- Use for Combined Heat and Power
  - Heat for digesters +
  - Excess gas is used to generate electricity
- Renewable natural gas options
  - Biofuel for vehicles
  - Feed to natural gas pipeline





### **Factors to Consider**







# **Typical Biogas Handling Systems**



Gas Storage



Gas Cleaning



Gas Cleaning



Flare



End Use - CHP Example





### **Neuse River Resource Recovery Facility**

- Currently expanding from 60 to 75 mgd
- Planning for expansion to 90 mgd (~ 2040)
- Centralized biosolids processing
  - Lime stabilization, composting, and some Class B liquid land application
- Converting to advanced digestion (Thermal Hydrolysis)
- Biogas energy recovery



### **Drivers for Change**



# Reliability and resiliency for future biosolids management

- Age of existing equipment
- Uncertainty of future Class B land application



# Sustainability and efficiency is a core focus of the City of Raleigh's strategic plan

 Optimize public infrastructure projects to address community resiliency, sustainability and efficiency.



### Decision to convert to anaerobic digestion

Reduce energy demand - 2.6 million KWhr/yr

# **Proposed Biosolids Process**



# Thermal Hydrolysis Process (THP)

 A sludge "pressure cooker" operating at about 330F/165C (90 psig)



## **Some Key Components**

- FOG receiving and handling
- Reuse existing GBTs for WAS thickening
- Blended sludge screening
- Centrifuges for dewatering upstream of THP
- Single THP Train
- Closed loop sludge cooling
- Two 2.2 MG mesophilic anaerobic digesters
- Clean gas to meet pipeline injection standards
- New BFPs + existing centrifuge for post dewatering
- Sidestream nitrogen removal for Phase 1

# Overall Facility Site Plan and Layout for New Residuals Processing Complex



# Visualization of the New Residuals Handling Complex (30-Percent Design Concept)



## **Project Benefits**







Net Energy Production with Renewable Natural Gas Significant reduction in residuals mass for final disposal

Reduced operating costs

# Biogas Utilization Evaluation of Options

### Goals of Gas Utilization at NRRRF

- Produce steam for THP and FOG pasteurization
- Convert biogas to an energy 'commodity' with value to the City
- Best life cycle cost solution
- Minimize risk / maximize flexibility



### **Options Evaluated**

- Base Option: Steam boiler only
- Engine driven blower
- CHP with engine generators
- Vehicle Fuel (buses)
- Vehicle Fuel (garbage trucks)
- Vehicle Fuel (both)
- 1 MW CHP and RNG to buses
- 2 MW CHP and RNG to buses
- Pipeline injection ruled out during screening
  - no suitable sized main available locally







## **Base Option: Steam Generation Only**



# Engine Driven Blower / Engine Generator



## CNG to Buses, Garbage Trucks, or Both



## Results – Biogas Usage



### **Energy Balance Results- Power Production**



### Life Cycle Evaluation: Capital and Operating Costs



## **Results – Net Present Value Comparison**



### (Negative is favorable)

## **Incentives & Funding**

### RINS

- Identification numbers used by the EPA to track renewable transport fuels in terms of compliance with the Renewable Fuel Standard (RFS)
- RFS is a federal program which requires vehicle fuel to be blended to contain a prescribed quantity of renewable fuel
- Program assigns renewable volume obligations to fuel suppliers
- CNG from digester gas will qualify for D3 Cellulosic RINS (category expanded in 2014)

### **Bus Purchase**

80 % funded by federal government (12 year minimum service life)

### **Alternative Fuel Excise Tax Credit**

- Tax incentive for compressed natural gas (CNG) and liquefied natural gas (LNG) when used as a motor vehicle fuel
- \$0.50 per GGE

### **City buses - Cost Sensitivity to Incentives**



Conclusion: biogas clean up for use in City buses = most attractive option

### A Pipeline Injection Alternative

- Considerations
  - City bus fleet conversion likely > 5 yrs away
  - New PSNC regional gas pipeline on NRRRF Site
- City approached by PSNC regarding new gas transfer main through Neuse River Facility
- Phased RNG Alternative
  - 1: RNG to pipeline (direct sale or third party offtake)
  - 2: RNG to City transport via third party offtake



## **Updated Net Present Value Results**





# **Biogas Upgrading Technologies**

**Pressur**e Swing Adsorption (Source: Guild Molecular Gate)



Selective Membranes (Source: BioCNG)





Water Scrubbing (Source: Green Lane)



Amine Scrubbing

## **Vendor proposals**

### **Options Evaluated:**

- 4 pressure swing adsorption technologies
- 2 amine scrubbing technologies
- 3 selective membrane technologies

### **Options Not Evaluated:**

 Water scrubbing: Leading vendors of water scrubbing technology in the USA proposed a PSA system instead

### **NET PRESENT COST OUTCOME**



(Negative is favorable)

### **Next Steps**

- City transport department has confirmed feasibility of CNG vehicle fuel program
- PSNC have confirmed pipe routing will be local to NRRRF
  - Discussion ongoing regarding injection of gas from NRRRF
- Bioenergy Project is in detailed design



### **Thank You!**







