Nutrient Analyzers for Process Control and Monitoring

Alexandria (Ali) Gagnon, P.E.

HRSD Treatment Process Engineer
VT PhD Candidate

HRSD

- Provide wastewater treatment for 17+ localities (250 mgd treatment capacity)
- Serve 1.7 million people (20% of all Virginians)
- "Bubble" and individual permits drive nutrient removal targets
- SWIFT Future implementation of indirect potable reuse via aquifer recharge driving advancement in process control

Sensor Selection

Effluent Phosphorus for bio-P monitoring and chemical dosing

Ammonia Based Aeration Control (ABAC) for energy and chemical savings

Sensors

Observations from HRSD's Experience with Probes

Ion Selective Electrodes

- Electrode life is unpredictable (2 weeks to 1 year)
- Drift is consistent but unpredictable
- Some compensation cartridges aren't required. (ex. K+)
- Don't clean with DI water!

Optical Probes

- Measuring Path Length is important
- With appropriate
 maintenance/cleaning,
 calibration/adjustment is rarely
 required.

Unreliable measuring to low concentrations <1 mg/L

Installation: Location, Location

- Nitrate/Nitrite
- Ammonia
- Nitrate + Nitrite
- Ammonia
- Phosphorus
- DO

Installation: Location, Location, Location

Installation: Location, Location, Location

- Nitrate/Nitrite
- Ammonia
- Nitrate + Nitrite
- Ammonia
- Phosphorus
- DO

Nitrate probes were moved to ensure accurate and time appropriate measurement for supplemental carbon control.

Installation: How is important too!

Nitrate probe moved to influent of tank

Nitrate probe installed in sink with flow pumped from influent of tank

Installation: Accessibility

Using Manufacturer's recommendation as jumping off points

How often should I calibrate the sensor? How often should I clean the sensor? How often should I replace the consumables?

- It really depends on a few different factors!

Sensor Action Flow Chart

Calibration

Sensor Validation – Sample Collection & Analysis

Sensor Validation: Data Collection

Nitratax Operator Collected

- Tracking sensor and lab data overtime allows for assessment of performance, monitoring of drift, outlier detection, etc.
- Bucket testing can assist with determining probe accuracy

Sensor Validation: Data Collection

Train 7 NH4 Bucket Test

- Tracking sensor and lab data overtime allows for assessment of performance, monitoring of drift, outlier detection, etc.
- Bucket testing can assist with determining probe accuracy

What is happening when you calibrate?

Internal Construction of Wet Chemical Analyzers

- Nutrient Analyzers
 - Phosphorus
 - Ammonia
 - Nitrate
 - Nitrite
- Activity Rate Analyzers
 - P-Uptake Analyzer
 - Oxygen Uptake Rate Analyzer (in construction)

ABAC: Accepting ISE Drift is a fact of Life

Thank you!