Inflow and Infiltration

John Sorrell, P.E.

City of Raleigh

Public Utilities Department

Raleigh's History with I&I

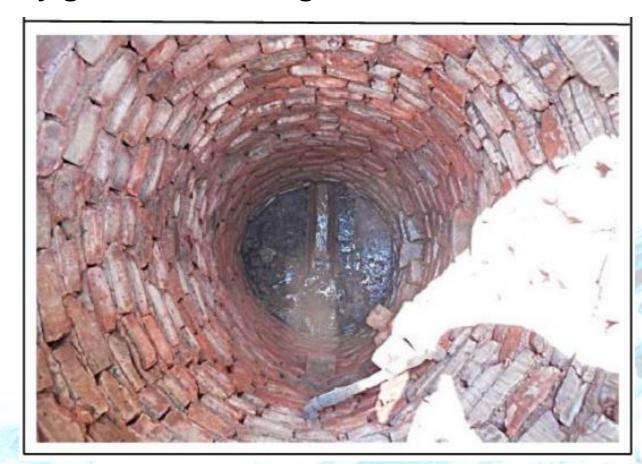
Our initial system was designed in 1888.

76 REPORT OF SEWERAGE COMMITTEE.

The "separate system," I may say, possesses manifold advantages over the combined; the size of pipe required being very much smaller in the separate than in the combined, makes the first cost very much in its favor. The

Treatment began in the 1950's

Inflow is a direct connected source that typically activates during a storm event


Inflow is a direct connected source that typically activates during a storm event

 Infiltration is groundwater that is entering the sewer system through defects. Can persist during dry weather, and typically gets worse during wet weather.

Infiltration is groundwater that is entering the sewer system through defects. Can persist during dry weather, and typically gets worse during wet weather.

Why do we hate it?

- Possible SSO's.
- Capital improvements may be needed to convey flows
- Cost of pumping and treating stormwater
- Peaking factors at our wastewater plants picture of EQ basin
- Capacity that we have do deal with, but doesn't relate to billed flows

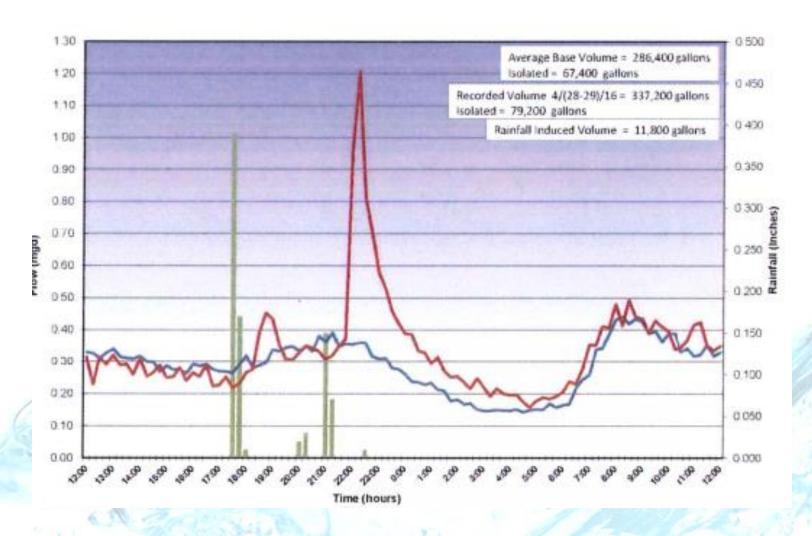
You have to find it to fix it.

- Short of replacing your entire system and turning your community into a construction zone, you have to find your I&I.
- Stepwise approach can save a lot of money.
- Flow monitoring can narrow the scope.

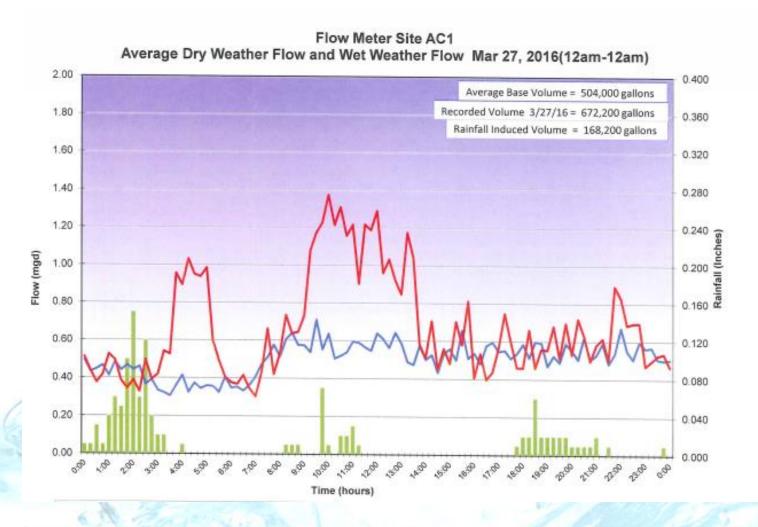
What are you measuring?

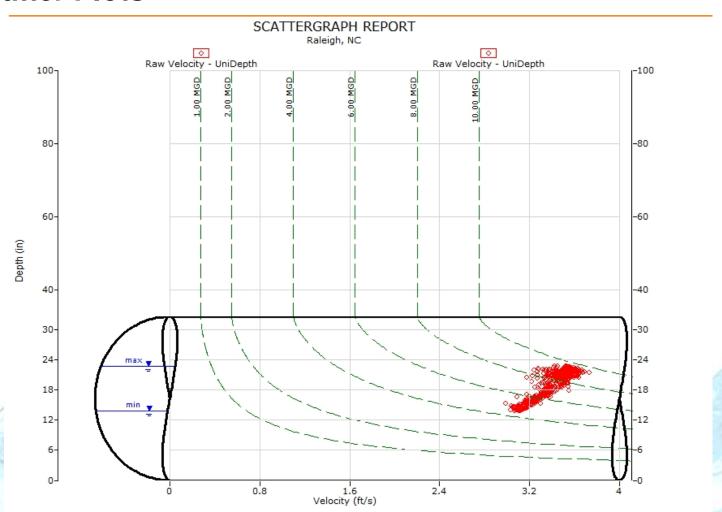
- Variety of technologies, but all are measuring <u>velocity</u> and <u>depth</u>
- These two parameters are used to calculate flow within the pipe
- In order to find Inflow and Infiltration, you have to compare to a "Normal" Day
- No two storms are alike:
 - http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html?bkmrk =nc

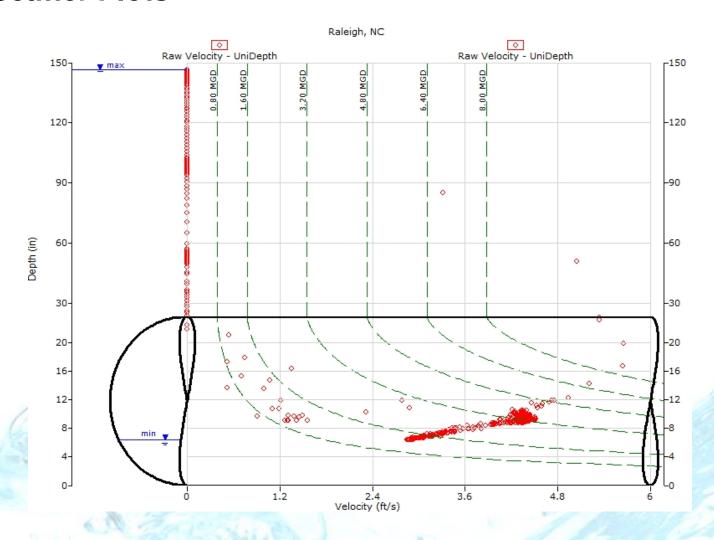
Some Definitions:


- Ground Water Infiltration (GWI)
 - Volume of infiltration on a dry weather day
 - You find GWI by analyzing the minimum flows in the early morning hours of dry weather days.

- Rainfall Dependent Inflow and Infiltration (RDI/I)
 - Difference in volume between the Average Dry weather day, and the Rainfall event.


Eyeball


Eyeball


Eyeball

Scatter Plots

Scatter Plots

Peaking Factors

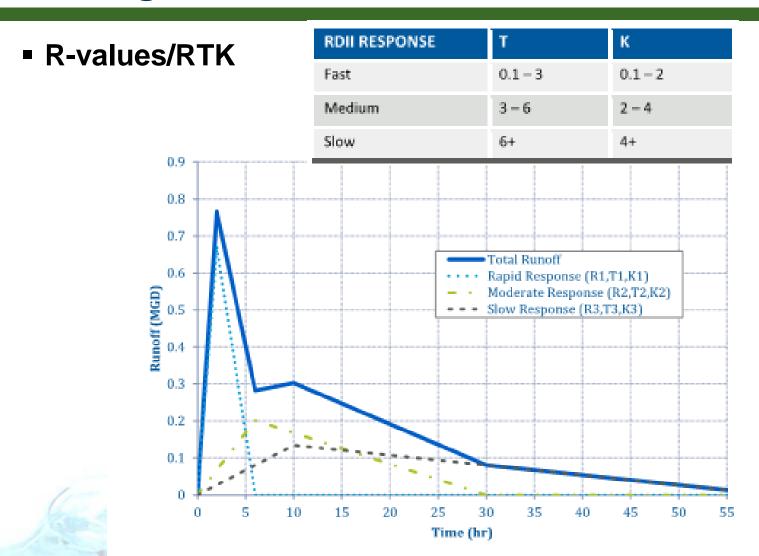
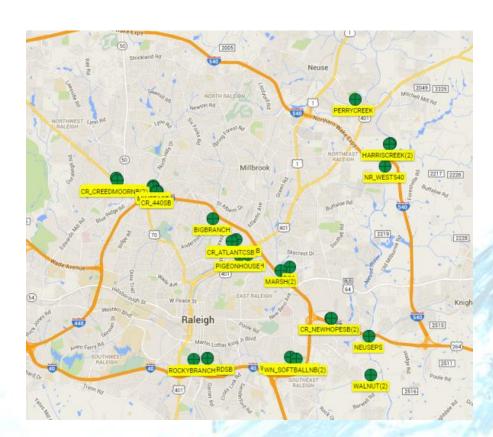
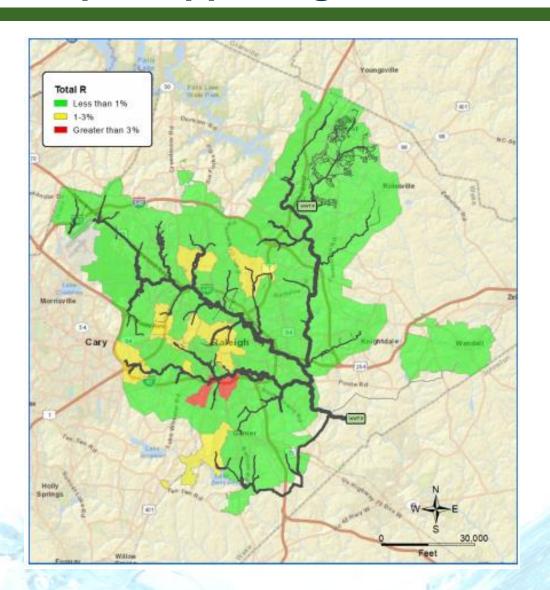
Table 3.1 - RDI/I Rankings

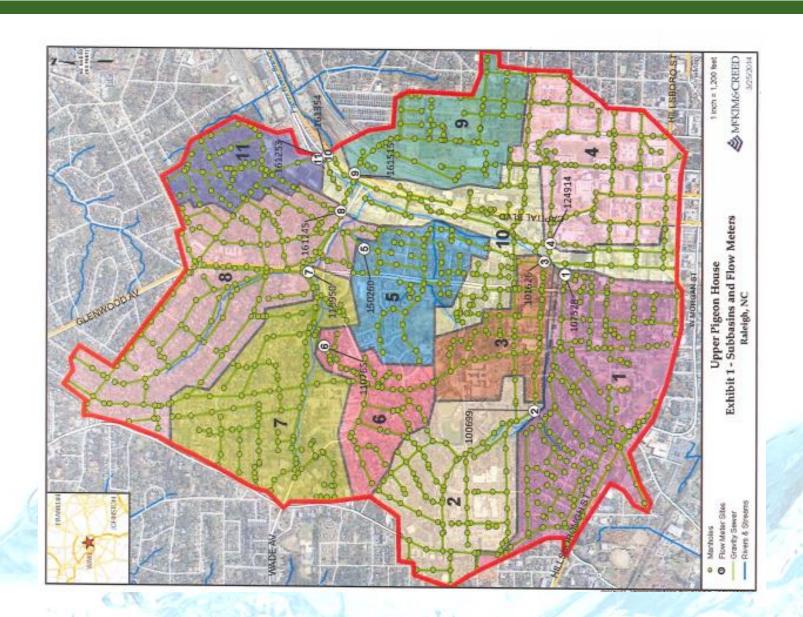
Sub-basin No.	Average Base Dry Day 24-Hour Flow (ABF) (gallons)	Maximum Wet Weather 24-Flow (gallons)	Maximum Total RDI/I Contribution (gallons)	Wet vs Dry Weather Flow Peaking Factor (PF)	RDI/I Ranking Volume/PF
AC-1	504,000	688,000	184,000	1.36	6/6
AC-2	285,600	530,000	244,400	1.85	4/3
BC-1	264,300	718,000	453,700	2.71	2/2
BC-2	476,900	773,000	296,100	1.62	3/4
CC-1	328,600	1,133,000	805,000	3.45	1/1
PC-1	545,600	784,000	238,400	1.44	5/5
PC-2	532,400	690,600	158,200	1.30	7/7
PC-3	795,200	846,300	51,100	1.06	8/8

GWI- compared to size of the drainage basin

Table 3.2 – Groundwater Infiltration Rankings

Sub-basin No.	Length of Gravity Piping (linear feet)	Apparent Infiltration (gallons per day)	Gallons of Infiltration (gal-inch-diameter/mile)	Infiltration Ranking Volume/IDM
AC-1	126,144	226,000	1,056	2/1
AC-2	147,866	54,000	222	8/8
BC-1	107,933	86,000	527	6/4
BC-2	152,637	143,000	602	4/3
CC-1	115,912	68,000	397	7/6
PC-1	230,026	189,000	461	3/5
PC-2	148,505	104,000	386	5/7
PC-3	229,536	291,000	767	1/2


Figure 2-18 RTK Runoff Calculation Process

Raleigh's Current Efforts

- Permanent Flow monitor Network
- Sewer model/Capacity Study
- Temporary projects

+

Table 3.1 – RDI/I Rankings

Table 5.1 RDI/TRankings					
Sub-basin	Average Base Dry	Maximum Wet	Maximum Total	Wet vs Dry	RDI/I
No.	Day	Weather	RDI/I	Weather Flow	Ranking
	24-Hour Flow	24-Flow (gallons)	Contribution	Peaking Factor	Volume/PF
	(ABF) (gallons)		(gallons)	(PF)	
1	191,000	372,000	181,000	1.9	6/10
2	74,000	308,000	234,000	4.2	5/4
3	94,000	454,000	360,000	4.8	3/3
4	188,000	316,000	128,000	1.7	8/11
5	92,000	381,000	289,000	4.1	4/5
6	134,000	254,000	120,000	1.9	9/10
7	51,000	102,000	51,000	2.0	11/8
8	131,000	1,079,000	948,000	8.2	1/2
9	79,000	174,000	95,000	2.2	10/7
10	139,000	511,000	372,000	3.7	2/6
11	19,600	188,100	168,500*	9.6	7/1

Table 3.2 - Groundwater Infiltration Rankings

Sub-basin No.	Length of Gravity Piping (linear feet)	Apparent Infiltration (gallons per day)	Gallons of Infiltration (gal-inch-diameter/mile)	Infiltration Ranking
1	38,233 (6"-10")	58,000	1,121	5
2	19,358 (6"-12")	16,000	671	8
3	17,383 (6"-12")	74,000	2,899	2
4	21,147 (6"-10")	83,000	2,671	3
5	12,014 (6"-10")	13,000	791	7
6	10,058 (6"-10")	49,000	3,475	1
7	22,706 (6"-10")	11,000	424	10
8	38,525 (6"-15")	45,000	954	6
9	13,833 (6"-10")	25,000	490	9
10	12,736 (6"-15")	22,000	1,214	4
11	10,766 (6"-8")	1,000	64	11

Decisions to Make:

- Flow monitoring contract options
 - Who owns the monitors?
 - Who maintains the monitors?
 - Who hosts the data?
 - What does the data integrate with?
 - Who analyzes the data?

Raleigh's Decisions:

- Flow monitoring contract options
 - Who owns the monitors Vendor
 - Who maintains the monitors- Vendor
 - Who hosts the data? Vendor
 - What does the data integrate with? SCADA
 - Who analyzes the data? City, Consulting Engineers

What Technology

- Flow monitoring Technologies
 - Non-contact (relatively clean data)
 - Traditional (Submerged sensor)
 - Lift stations
 - Other (smart covers, etc.)

Other Things of Note

- Groundwater levels and time of year influence response to storms
- Manhole selection is very important to good data
- You can't have too many meters

Questions?

John Sorrell, P.E.

John.Sorrell@raleighnc.gov
919-996-3485