

Nutrient Analyzers and Probes used in Wastewater Process Control

- Nutrient Analyzers and Probes
- BNR sample points
- Advanced Online Control

Nutrient Analyzers and Probes

Nutrient Analyzers and Probes used in Wastewater Process Control and Monitoring

ORP Probe

- Nitrate
 - UV Detection Probe
 - Ion Selective Probe
- Ammonium
 - Wet Chemistry
 - Ion Selective Probes
- Phosphate
 - Wet Chemistry
- Total Phosphate and Nitrogen
 - Wet Chemistry

ORP – Oxidation Reduction Potential in Wastewater

Aeration and the (Bio-Chemical)

ORP Probe

FACT

- Measure the Redox Potential (-500mV 500 mV)
- Not an actual concentration, but more an indication of which process condition you are in (Aerobic, Anoxic or Anaerobic)
- Normally placed in tanks with anaerobic or anoxic process conditions
- Used often for IMLR Control
- Cheap compared to actual nutrient analyzers and probes
- Difficult to use for control as setpoint is more a range and will depend of the day. Rain, temperature ect.

CONCLUSION

- Difficult to use for process control
- If You Want to Control Process Chemistry, You should Measure the Actual Parameter than a surrogate Parameter such as Redox potential that wont give you direct information about the nutrients

Ion Selective Probes

Ion Selective Probes

FACT

- Used for measuring Ammonium and Nitrate in Wastewater
- Are placed directly in the process tank no need for filtration
- Cheap compared to actual nutrient analyzers
- Lots of interference from other "stuff" in the wastewater. Calibration will drift
- Potassium and Chlorine compensation electrodes
- Maintenance Intensive
- Difficult to use for process control in the aeration tanks as the accuracy is not acceptable under 5 mg/L.
- Probe will "fall a sleep" at low concentrations. Need to replace cartridge more often at low concentrations

CONCLUSION

- Can be used to measure ammonium in the INFLUENT for process control in BNR-Systems
- Cannot be used for control when placed directly in process tank.
- Can be used for control of side stream ammonium removal

Nitrate probe

FACT

- Measure Nitrate
- Placed in Process Tanks
- Used for Process Control. IMLR, External Carbon addition and Phasing in aeration tanks
- Based on UV measurement
- Placed Directly in the basin
- No need for filtration can be placed directly in MLSS, but filtration will improve the readings of the probes
- Very reliable
- Low Maintenance
- CONCLUSION
- Highly recommended for use for on-line Control of BNR-systems

Ammonium Analyzer

FACT

- Used for measuring Ammonium in Wastewater
- Wet Chemistry will require reagents
- Will require filtration of the MLSS
- Expensive compared to probes
- Very reliable down in very low concentrations
- Self calibration
- Can be placed by the process or inside buildings depending on filtration system
- Service agreement is recommended
- Used for DO and Phase Process Control
- Use of proprietary reagents

CONCLUSION

Highly recommended for use for on-line Control of BNR-systems

Phosphate Analyzer

FACT

- Used for measuring Phosphate in Wastewater
- Wet chemistry will require reagents
- Will require filtration of the MLSS
- Only Possibility
- Very reliable down in very low concentrations
- Self calibration
- Can be placed by the process or inside buildings depending on filtration system
- Service agreement is recommended
- Use of proprietary reagents
- Used for process control of BIO-P and Chemical precipitation

CONCLUSION

Highly recommended for use for on-line Control of BNR-systems

Total Phosphor and Nitrogen Analyzer

FACT

- Used for measuring Total Phosphor and Nitrogen in Wastewater
- Wet chemistry and "digestion"
- Will require filtration of the MLSS
- Only Possibility
- Very reliable down in very low concentrations
- Self calibration
- Can be placed by the process or inside buildings depending on filtration system
- Service agreement is recommended
- Used for process monitoring only!!
- Use of proprietary reagents

CONCLUSION

- Cannot be used for process control in BNR systems
- Can be used for monitoring effluent for compliance.
 Will not give a lot of Process information

 $lue{lue}$

Chemscan –All in One

Containers

Chemscan – All in One

FACT

- Used for measuring Ammonium, Nitrate and Phosphate in Wastewater
- One Analyzer to operate and maintain
- More simple to operate than most wet chemistry analyzers
- High Capital Cost
- Central maintenance
- Low Maintenance cost
- Mix your own reagents
- Needs sample header, valves and pumps
- Depending of parameters and number of sample locations the cycle time is normally longer than for convential systems (15 to 60 min)

CONCLUSION

 Highly recommended for process control in BNR-Systems

Neither wind, not rain, nor heat , nor driving snow or dark of night shall deter staff from getting the job done

Filtration Systems

BNR Sample Points

WATER TECHNOLOGIES

BNR Sample Points

Advanced On-Line Control

WATER TECHNOLOGIES

Why Advanced Controlling?

- Primary Benefits

- Reduced operation costs:
 - Reduced energy consumption
 - Increased energy production
 - Reduced chemical consumption
- Increased hydraulic capacity
 - Increased flow through existing plant
 - Reduced overflow/by pass
- Increased biological capacity
 - Increase biological load
 - Improved effluent quality

Why Advanced Controlling?

- Secondary Benefits

- Operational stability
- Operational safety
- Remote access and support
- Understanding of the system
- Motivation of the staff
- Data handling and reporting

Advanced Online Control possibilities

AnitaMox Aeration

Key figures

Case Study – North Cary WWTP

Case Study – North Cary WWTP

Operation savings

Energy, Aeration tanks: Aeration

Energy, Aeration tanks: Mixing

Energy, Internal pumping

Energy, Sand grid: Aeration

Dosage, Precipitation of total-P

Dosage, External carbon

$$25 - 75$$

$$25 - 100$$

$$25 - 100$$

Proven effect [%]

Extra achievements:

- Lower chemical sludge production
- More biogas production