

Densification of Solids for Improved Plant Performance



# Do more with less! PRESENTATION OUTLINE

- 1. What and Why?
- 2. Definitions
- 3. Background / Application
- 4. Technology
- 5. Case Studies





## Sludge densification

- AGS Activated Granular Sludge
  - batch selection
- BAS ballasted activated sludge
- MOB mobile organic biofilm
- Hydrocyclones gravimetric selection



What is gravimetric selection?

In the simplest terms we are separating the heavier / denser material from the lighter fraction.





Why gravimetric selection?

By retaining the heavier biomass we can:

- Increase clarifier solids throughput
- Improve SVIs (year round)
- Enhance BNR (N and P)





#### **Definitions:**

Overflow – lighter fraction to be wasted to solids handling

Underflow – heaver / denser material (RAS)



#### **System Overview**

**Skid Flow Paths** 





UNDERFLOW

OVERFLOW

### **Process Flow: Clarifier Wasting**



WAS WASTING: >500,000 GPD Total Plant Flow

#### **Clarifier Wasting Application**



### **System Overview**

**Settling Behavior** 

#### FEED FLOW OVERFLOW UNDERFLOW



## Purpose

#### **Aerobic Granular Sludge (AGS)**



## **Purpose**Aerobic Granular Sludge (AGS)



### Purpose

#### **Aerobic Granular Sludge (AGS)**



#### **Purpose**

#### **Aerobic Granular Sludge (AGS)**



## Microbial communities enrichment in the granule fraction







**Nutrient Symposium 2017** 

Intro

Methods

Results

Conclusions



## Case Study #1

Installation: 2019

3.8 MGD – A2O Oxidation Ditch

#### **inDENSE Case Studies**



#### **inDENSE Case Studies**



#### **inDENSE Case Studies**









Pennsylvania - Oxidation Ditch

#### **Results:**

- Improved plant performance and operation during winter
  - 38% improvement from 2018 to 2019
  - 58% improvement from 2018 to 2020 (current)
    - 2019 to 2020: 33% improvement (current)
  - Nitrification improvements
  - Easier plant operation
- Improvement to sludge dewaterability
  - Disposal volume decreased

Floc Size (μm): (% in range) < 150

20%

150 - 500

60%

> 500

20%

## Case Study #2

Installation: 2019

15 MGD - A2O















**Colorado - Johannesburg** 

#### **Results:**

- Improved Settleability lead to:
  - Ease of operation
  - Consistent effluent quality
  - 49% improvement compared to January 2019 to 2020
  - 63% improvement compared to February 2019 to 2020
  - 35% improvement compared to March 2019 to 2020



Case Study #3

Installation: 2018 8.8 MGD - AO



Avila

## inDENSE Train vs. Control Train SVI



Avila

#### **Results:**

- Improved Settleability lead to:
  - 35% improvement compared to Control November
  - 47% improvement compared to Control December
  - 56% improvement compared to Control January
  - Increase PAO population
  - Increased SRT from 5 days to 7 days
  - Increased clarifier loading from 30 lb/ft2/day to 52 lb/ft2/day
  - 10-15% of particles >500 um where control was  $^2$ 2% > 500 um
- Piloting still ongoing



## Case Study #4

Installation: 2019

10 MGD - Oxidation Ditch

**Utah** - Oxidation Ditch



**Utah - Oxidation Ditch** 



#### Monthly SVI Averages and Ranges



## Case Studies Utah - Oxidation Ditch

#### **Results:**

- Improved Settleability lead to:
  - 62% improvement compared to March of 2019 to 2020
- Still looking to validate:
  - Improved capacity
  - Increased clarifier loading

#### Denver Metro –Pilot Study

- •The reduction in dSVI in the Test basin allowed operation at a solids loading rate to the Test clarifier that was 32% greater than the Control while maintaining equivalent effluent TSS.
- •Under the conditions tested in the study, granulation was observed to occur in a full-scale continuous flow system. The total fraction of biomass larger than 250  $\mu$ m began to increase after one month of operation, and within three months peaked at 56%. The fraction of biomass within the range of 250 to 500  $\mu$ m fluctuated over time, while the fraction  $\geq$ 500  $\mu$ m continually increased, peaking at 20% before piloting ceased.



### Acknowledgments

- ARA Consult Dr. Bernhard Wett
- NEWhub Dr. Sudhir Murthy
- HRSD Dr. Charles Bott
- DC Water Chris deBarbadillo
- Belinda Strum University of Kansas











## THANK YOU

