DEWATERING EQUIPMENT & & SOLIDS CAPTURE

Lower Neuse Basin Association / Neuse River Compliance Association

July 26th, 2018

Dan Fronhofer, P.E. BDP Industries, Inc.

Gregg Hauser Clearwater, Inc.

Agenda

Recent Advancements & Industry Shifts

- Screw Press
 - Smaller WWTP's are adding mechanical dewatering
 - Pre-Thickening
- Belt Press
 - Pre-Thickening Throughput Capacity
 - Ability to Process Abrasive Material
 - Enclosed for Odor Control
 - Filtrate Recycle for Reduced Water Usage

Solids Capture

Screw Press

- Naturally Enclosed
- Low GPM
 - Washwater
 - Sludge
- □ Fiber = Good
 □
- \Box Grit = Bad
- EasilyMonitored

Screw Press

Screw Press

12" Screw Press

Pre-Thickening Advantages

- Feed to Unit: 50 gpm at 1.0%
- Average discharge from pre-thickening drum is 7 10%

Result: 5 - 10 gpm to the Screw

Belt Press Schematic

Conventional 2-Belt Design

3-Belt Design

Independent Gravity Zone - 150 gpm/meter

Transition and Curved Wedge

287 gpm 1.7% - 2,400 lb/hr

290 gpm 1% aerobic – 1,400 lb/hr

FEED DISTRIBUTION

- Uneven distribution causes:
 - Premature clipper wire failure
 - Accelerated wear on roll coating
 - Cake solids concentration is lowered
 - Belt misalignment

Uneven Distribution

Distribution / Cake Solids

- Uneven distribution "average" cake solids concentration: 18.7wt%
- Even distribution "average cake solids concentration: 22.0wt%
 - A gain of over 3 percentage points.

Sand Dewatering

3 meter - Distribution

Other Recent Industry Shifts

- Enclosures and Odor Control
 - Totally enclosed vs. Partially enclosed
 - 6% solids and greater
- Reduced Washwater Usage
 - Washwater recycle
 - Reduces water demand
 - Also reduces filtrate as side-stream

Enclosed GBT

Enclosed Gravity Section

Enclosed Gravity Section

Enclosed Gravity Section

Shift the Spotlight: Solids Capture "Won't Catch Me Running Dirty..."

- Optimization Parameters
- Focus on Solids Capture
- Why Does it Matter?
- A Brief Introduction to Dewatering Devices
- Ways to Improve Solids Capture
- Specifics for Existing & New Design
 - Belt Filter Press
 - Screw Press

Optimization Parameters

- Hydraulic Loading gpm
- Solids Loading or Throughput lb/hr
- Chemical Dosage lb / dry ton
- Discharge Cake Solids %wt
- Solids Capture %

Optimization Parameters

Balancing Act

Focus on Solids Capture

- Most overlooked parameter
- Run clean first, then improve other parameters
- Often leads to improvement in other parameters
- Avoid Running Dirty!
 - Lowest overall TSS for filtrate / centrate
 - Less returned to head of the plant

Why Does it Matter?

- Poor Performance can be 80%, or as low as 60% Solids Capture
- Filtrate often returned to head of plant
- Significant load
 - Ratio to wwtp size
 - Expensive
- Running "dirty" problems for press

I Want Numbers

Plant Information	VALUE	VALUE	VALUE	UNITS
Average Plant Flow	1	3	10	MGD
Yearly Sludge	150	450	1500	Dry Tons per Year
Solids Throughput - Yearly	300000	900000	3000000	Dry Pounds per Year
Solids Throughput - Weekly	5769	17308	57692	Dry Pounds per Week
Solids Capture	VALUE	VALUE	VALUE	UNITS
Recycled at 60% capture	120,000	360,000	1,200,000	lbs returned to head of plant (yr)
_	·			•
Recycled at 80% capture	60,000	180,000	600,000	lbs returned to head of plant (yr)
Recycled at 98% capture	6,000	18,000	60,000	lbs returned to head of plant (yr)

Numbers Aren't My Thing

- Car Wash
- Mop The Floor
 - Imagine half of the grime decides to stay
 - Accumulation
- Toughest stuff to capture fines

Trace The Solids Path

Low Solids Capture

Hey, That's a Loop

Why Does it Matter, Again?

- Recycled Solids hit plant multiple times
- Pumps, pipes, valves
- Treatment energy
 - Take up space in treatment zone
 - SRT reduced in tanks & digesters
- Alter the biology
- Nutrients phosphorus (side stream)
- Carry residual polymer charge back to system
- Overall plant capacity

Low Solids Capture

Poor Solids Capture

Poor Capture – Belt Press

Poor Capture - Screw Press

Catch Me Running Dirty

- Increased wear on flights and brushes
- Increased wear on basket or moving rings
- More frequent cleaning

Catch Me Running Dirty

- Belt Looping
- Belt Wrinkles and Stretching
- Increased Maintenance
 - Slide Strips
 - Rollers
 - Belts
- More Frequent Cleaning

Good Solids Capture

- Visual examples
 - Belt Press
 - Screw Press

Running Clean – Aerobic Version

Running Clean – Aerobic Version

Running Clean – Aerobic Version

Running Clean – Screw Press

Running Clean – Anaerobic Style

Running Clean – Anaerobic Style

Running Clean – Anaerobic Style

Running Clean – WTP PAC1

Ways to Improve

- Polymer
 - Newer polymers. Cross-linked, highly structured
 - Proper activation & dilution
- Consistency to the Press
- Remove Variables Whenever Possible
- Take it Step by Step
- New Dewatering Equipment
 - Technology Comparisons
 - Specific Technology Notes

Emulsion Polymer Unit

- Check Inlet Water Pressure
 - Minimum level required
- Check Mixing in Chamber
- Check Concentration
- Flooded Suction
- Length of Neat Polymer Line
- Pressure Relief Valve
- Volume of Solution Line

Fluctuating Water Pressure

Worse than we thought

Neat Polymer Feed

3 gpm water flow

0.5% conc.

10 ft/min

Fluctuating Water Pressure

Worse than we thought

Fluctuating Water Pressure

Worse than we thought

Polymer Age Time

- Direct Feed from Polymer Blending Unit (PBU)
 - Rely on Performance of the PBU
 - Length and diameter of Solution Line
 - More Volume = More Polymer Activation
 - But... Also leads to Delayed Response and Risk of Fluctuations
- Polymer Age Tanks
 - Increase Polymer Activity → Lower Polymer Dose
 - Buffer Consistent Concentration in Solution Line
 - Require Additional Equipment
 - Level Sensors, Mixers
 - Polymer Solution Pumps

Polymer Solution Tanks

Consistency to the Press

- Consistent Polymer Flow
 - Volume of Flow (gpm)
 - Concentration (%)
- Consistent Sludge Flow
 - Volume of Flow (gpm)
 - Consistent Make-Up
 - Percent Solids
 - Blend Ratio and/or Type of Sludge

Remove Variables

- Consistency is Key
 - Blend Tank
 - Meter in outside sources (Septage, WTP residuals)
 - Mix settled sludges
- Easier to Find the Right Chemistry
 - A single polymer program is best
 - However, somewhat common for summer/winter polymer program

Step by Step

Conditioning Speeds Pressure

Conditioning

Strong Floc with Clear Separation

Clean Initial Filtrate

Pressure Section Speed

Belt Press

- Slow belts until cake is roughly 3/8" to 5/8"
- Time under pressure is important

Screw Press

Monitor inlet pressure

Belt Tensions

Step by Step Same for Screw Press / Rotary Press

Conditioning

Speeds

Pressure

Screw Press

Increased Automation

Discharge Cone

New Dewatering Equipment Design Considerations for Solids Capture

Belt Press

- Distribution
- Pressure Profile Curved Wedge & Roll Diameter
- Belt Tracking Continuously Centered
- Screw Press / Rotary Press
 - Inlet pressure monitoring
 - Screen design
 - Filtrate recycle
 - Automatic Cone Pressure
- Centrifuge
 - Torque monitoring
 - Pond depth adjustments
 - Inlet location
 - Specific to the application

Thank You

questions?

Residuals – At Work and at Home

