THP at the NRRRF

Neuse River Resource Recovery Facility

John Gibson, Facility Manager john.gibson@raleighnc.gov

- * NRRRF is rated at 60 MGD and is upgrading to 75 MGD.
- * The plant uses aerobic sludge digestion and is one of the largest plants in the US that still uses aerobic digestion.

- * Aerobic digestion is an energy and space guzzler.
 - Electrical costs for air on the solids side runs about \$100,000 a month.
 - Plant generates about ~43 dry tons of solids a day and utilizes its solids in three ways:
 - Class B Becoming more difficult to environmentally reuse Class B solids and is the most expensive. [\$549 DT]
 - ★ Class A Uses alkaline addition (LKD addition = >\$850,000 a
 year) to produce and is seasonal in its use. [\$184 DT]
 - ➤ Dewatered Sludge Transporting to a composting facility cost \$1,000,000 a year. [\$254 DT]
 - Average cost per day of the 3 = \$ 14,147 day or \$5,100,000 yr.

- * All things considered, the decision was made to go to anaerobic digestion.
 - Smaller footprint
 - Cheaper production
 - Beneficial reuse of production gas.
- * After examining many of the current technologies available, THP prior to anaerobic digestion was considered the best option.

★ What is THP???

- THP is an acronym for Thermal Hydrolysis Process
- It is a means of treating biosolids prior to digestion that originated in Norway and is gaining recognition in the United States.
- Higher % solids into digestion means only half as much anaerobic digestion volume required.
- THP lyses cells to achieve higher VSR in digestion
- This reduction results in half the solids after digestion. Instead of dealing with 43 DT/day....we end up dealing with 22 DT/day.

★ So how does THP work....how does it reduce the amount of solids and digesters needed by 50%????

- * Before we discuss THP, let's discuss dewatering.
 - There are many forms of water found in sludge.
 - **X** Free water
 - **X** Surface Water
 - X Interstitial Water
 - **X** Bound Water

Water Distribution in Sludge

- * Free water is typically easy to remove and can be accomplished by gravity.
 - Gravity Thickener Tanks are prime examples.
 - Although this process is simple, it has its limitations and not all free water is removed.
 - Simple gravity, without chemical addition can give you about 3% solids.
 - Adding polymers can increase to about 6 or 7%.

- * Free and Interstitial water can be removed by mechanical means.
 - Belt filter presses and centrifuges can break some of the floc walls and release interstitial water and perhaps some surface water also.
 - Using with polymers, a25% 30% solid isachievable.

- * Surface and bound water are more difficult to remove by mechanical means.
 - Cell walls must be destroyed to gain access to this water.
 - In THP process, this is accomplished by using pressure and heat.

- * There are now numerous providers of THP but we have narrowed our focus to two.
- * There are differences between the two but the basic process is the same.

CAMBITM

Veolia-BiothelysTM

- * The THP basic process is similar to a pressure cooker:
 - Systems are a batch process
 - Feed solids (13 − 18%) are preheated
 - The preheated solids are feed into a reactor tank
 - ► Steam is applied to take the solids in the reactor to a temperature from about 130° C to 150° C (265° F to 300° F)
 - Steam is also used to bring the pressure in the reactors to 125 - 175 psi
 - The solids are held in the reactor for 25 − 30 minutes producing a Class A product by pasteurization/sterilization.

*** REACTOR FLOWS**

*** BEFORE THP**

***** AFTER THP

- * What are the benefits of THP?
 - Half the required volume for conventional anaerobic digestion due to the increase in viscosity.
 - Higher VSR means less dry mass to disposal.
 - Better dewaterability means less wet mass to disposal.
 - Greater gas production more gas to utilize for energy renewal.
 - Class A product <u>before</u> digestion.
- * What problems can THP create?
 - TN in sidestream from 2,000 to 3,000 mg/l.
 - TP in sidestream may reach 300 mg/l

- * Sidestream treatment is essential to the plant.
- * Some of the technologies considered:
 - Deammonification technologies:
 - **✗** World Water Works DEMON
 - SBR (Sequencing Batch Reactor) alternates cycles: filling, aeration, mixing, settling and drawdown
 - Anammox bacteria are suspended in granular form
 - Cyclone is used to separate wasting of anammox and AOB/NOB
 (AOB = Ammonia Ox bacteria / NOB = Nitrite Ox bacteria)
 - Lowest air requirement of all deammonification technologies
 - Kruger ANITA Mox MBBR (Moving Bed Biofilm Reactor)
 - Continuous flow through process
 - AOBs and anammox bacteria colonized within plastic media carriers
 - Can be harder to eliminate NOBs

- Deammonification technologies (Continued):
 - Kruger ANITA Mox IFAS (integrated fixed-film activated sludge)
 - Continuous flow through process
 - Anammox bacteria colonized on plastic media carriers; majority of AOBs in the suspended phase
 - Clarifier used for solids return, allows separate wasting of AOB/NOB
 - Smallest footprint
- Sidestream Phosphorous Removal
 - X Ostara Pearl Process
 - Treats dewatered filtrate/centrate
 - Magnesium chloride and caustic addition
 - Up-flow fluidized bed reactor

- **✗** Ostara Pearl Process (Continued)
 - Precipitate high quality fertilizer, Crystal Green, sold to parks and golf courses
 - Typically removes 85-95% of sidestream phosphorus load
- **X** CNP Airprex Process
 - Treats digested sludge
 - Magnesium chloride and caustic addition
 - Up-flow fluidized bed reactor
 - Precipitate fertilizer
 - Guaranteed 95% phosphorus removal from sidestream
 - Recovers 45-55% as a struvite product
 - Improves dewaterability of sludge, may reduce dewatering polymer use
 - Requires a defoamant system only as a precautionary

- **K** Gas Utilization Options
 - CHP (Combined Heat/Power)
 - **✗** Steam Boiler Only (Base Option)
 - **✗** Engine Driven Blower
 - **X** CHP with engine generators
 - CNG (Compressed Natural Gas)
 - **✗** CNG to buses and/or garbage trucks or sell to 3rd party
 - ✗ Mother/daughter fueling stations or pipeline injection
 - Phased Options
 - **★** 2 MW CHP + CNG to buses
 - **★** 1 MW CHP + CNG to buses

THP at NRRRF Biosolids Train

- * This is a lot of variables and equipment to consider
- * Where will we put it all

*** Site Location**

- * Where are we at?
 - Preliminary Engineering report has been completed
 - Design work to begin within the next 90 days.
 - Construction to begin in early 2018.

QUESTIONS

